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Abstract. We consider the problem of approximating the global maximum of a quadratic program
(QP) subject to convex non-homogeneous quadratic constraints. We prove an approximation quality
bound that is related to a condition number of the convex feasible set; and it is the currently best
for approximating certain problems, such as quadratic optimization over the assignment polytope,
according to the best of our knowledge.
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1. Introduction

Consider the quadratic optimization (QP) problem with convex non-homogeneous
quadratic inequality constraints

(QP)
q̄(C) := Maximize q(x) := xT Cx

Subject to ‖Aix + bi‖2 6 1, i = 1, . . . , m

where symmetric matricesC ∈ <n×n,Ai ∈ <ri×n (ri 6 n), andbi ∈ <ri are given.
Note that ifri = 1, then it becomes a linear constraint with (nonsymmetric) upper
and lower bounds. Denote bȳq = q̄(C) the maximum value of the problem.

We assume that the (QP) problem is feasible, bounded and it has an nonempty
interior; and thereby, assume thatx = 0 is a “center” of the convex feasible region,
which implies that 1− ‖bi‖2 > 0, i = 1, . . . , m. For simplicity, we also assume
that C is positive semidefinite. Thus, the global minimum value ofq(x) in the
feasible region,q = −q̄(−C), is 0.

Normally, there may be a linear term in the objective function, or/andC is not
positive semidefinite, or/andx = 0 is not in the interior of the feasible region. We
will address these issues later.

Recently, there were several results on approximating this quadratic maximum.
Bellare and Rogaway [3] established several negative result on approximating this
problem; Goemans and Williamson [8] (also see Frieze and Jerrum [4]) proved
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an approximation result for the Maxcut problem; Nesterov [11] generalized their
result to approximating the Maxcut problem with a more general objective matrix;
Ye [18] extended their result to solving the continuous (QP) with simple bound con-
straints; Ye [19] and Nesterov [12] proved constant approximation quality for prob-
lem (QP) such thatATi Ai is diagonal andbi = 0; Nesterov [13] and Nemirovskii
et al. [10] established a quality bound whenbi = 0; Fu et al. [5] constructed a
quality bound for approximating (QP) without those assumptions. Their results
can be summarized as follows.

• Bellare and Rogaway [3] show that if the feasible regions is a polytope, then
there is a constantδ such that the problem has no polynomial algorithm to
yield a solutionx with

q(x) > 2− logδ nq̄,

unless NP⊂P̃, whereP̃ denotes the class of languages recognizable in quasi-
polynomial time; there is a constantε 6 1/3 such that it has no polynomial
algorithm to yield a solutionx with

q(x) > (1− ε)q̄,
unless P=NP.

• If i = 1,AT1A1 is positive definite andbi = 0, then Vavasis [17] and Ye [20]
develop a procedure to obtain a feasiblex with

q(x) > (1− ε)q̄,
whose running time is polynomial inn and| ln ε| for any 1> ε > 0.

• If all ATi Ai are diagonal (or mutually commute) andbi = 0; then Nesterov
[12] and Ye [19] are able to generate a feasible (randomized) solutionx̂ such
that

E(q(x̂)) > 2

π
q̄.

• If all bi = 0, then Nesterov [13] and Nemirovskii et al. [10] produce a feasible
(randomized) solution̂x such that, with a constant probability,

q(x̂) > 1

2 ln(2mmin(m, n))
q̄.

• If the feasible region is bounded and has nonempty interior, Fu et al. [5] (also
see Bellare and Rogaway [3], Vavasis [17] and Ye [20]) compute a feasible
solutionx such that

q(x) > 1

m2
q̄.
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In this paper, we approximate the problem wherebi 6= 0, that is, the problem
containing convex non-homogeneous quadratic constraints.

2. Positive semi-definite relaxation

Let

Q :=
(

0 0
0 C

)
� 0 and Qi :=

( ‖bi‖2 bT Ai
ATi b ATi Ai

)
� 0.

(Here,X � Z means thatX − Z is positive semi-definite.) Then, the problem is
equivalent to

(QP)
q̄ := Maximize (1; x)T Q(1; x)

Subject to (1; x)T Qi(1; x) 6 1, i = 1, . . . , m,

where column vector(1; x) ∈ <n+1 with 1 at its top position. Our approxima-
tion algorithm for (QP) is to solve the positive semi-definite programming (SDP)
relaxation problem

(SDP)

p̄(Q) := Maximize 〈Q,X〉

Subject to 〈I1, X〉 = 1,
〈Qi,X〉 6 1, i = 1, . . . , m,
X � 0,

(1)

whereI1 is the diagonal matrix with 1 in its first diagonal position and 0 everywhere
else. Here, unknownX ∈ <(n+1)×(n+1) is a symmetric matrix. Furthermore,〈·, ·〉 is
the matrix inner product〈Q,X〉 = trace(QTX). Since the original QP problem is
feasible, so is the SDP relaxation.

The dual of (SDP) is

p̄(Q) = Minimize y0+ eT y

Subject to
∑m

i=0 yiQi � Q, y > 0 ∈ <m,
(2)

whereQ0 = I1. Note that the primal is feasible and the dual has an interior so
that there is no duality gap between the primal and dual. Denote byX̄(Q) and
(ȳ0(Q), ȳ(Q)) an optimal solution pair for the primal (1) and dual (2).

The positive semi-definite relaxation was first proposed by Lovász and Shrijver
[9], also see recent papers by Alizadeh [1], Anstreicher and Wolkowicz[2], Fujie
and Kojima [6] and Polijak, Rendl and Wolkowicz [16]. This relaxation problem
can be solved in polynomial time, e.g., see Nesterov and Nemirovskii [14].

We have the following relations between (QP) and (SDP).



4 YINYU YE

PROPOSITION 1.Let q̄ = q̄(C), q = −q̄(−C), p̄ = p̄(Q), andp = −p̄(−Q).
Then,

p 6 q 6 q̄ 6 p̄. 2

3. Rank reduction

We now generate a feasible solution for (QP), similar to Nemirovskii et al. [10]. Let
X̄ = X̄(Q) � 0 be an optimizer of (SDP), and let the lower triangle factorization
matrix of X̄ be L̄ = (l̄1; . . . ; l̄n) ∈ <n×n, i.e., l̄j is the j th row of L̄, such that
X̄ = L̄L̄T . Then, we have

〈L̄T QL̄, I 〉 = 〈Q, L̄L̄T 〉 = 〈Q, X̄〉 = p̄,
and fori = 1, . . . , m,

〈L̄T QiL̄, I 〉 = 〈Qi, L̄L̄
T 〉 = 〈Qi, X̄〉 6 1,

Also, sinceX̄11 = 〈I1, X〉 = 1, l̄1 has 1 in its first position and 0 everywhere else.
We generate a random vectorû ∈ <n+1 with independent components taking

the value 1 or−1 with equal probability, then assign

v̂ = L̄û ∈ <n+1. (3)

Note that with probability one

v̂2
1 = (l̄1û)2 = (û1)

2 = 1,

v̂T Qv̂ = 〈L̄TQL̄, ûûT 〉 6 〈p̄I, ûûT 〉 = np̄,
and, fori = 1, . . . , m,

v̂T Qiv̂ = 〈L̄T QiL̄, ûû
T 〉 6 〈I, ûûT 〉 = n.

Now, we generate a vector solutionx̂ ∈ <n from

x̂ = (v̂2; . . . , v̂n+1)/v̂1. (4)

Then, the expected value

E(x̂T Cx̂) = E(v̂TQv̂) = E
(〈L̄TQL̄, ûûT 〉) = 〈L̄T QL̄,E(ûûT )〉

= 〈L̄T QL̄, I 〉 = p̄,
and

E(‖Aix̂ + bi‖2) = E(v̂TQiv̂) = E
(〈L̄TQiL̄, ûû

T 〉) = 〈L̄TQiL̄,E(ûû
T )〉

= 〈L̄TQiL̄, I 〉 6 1.

To summarize, we have
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PROPOSITION 2.With probability one

v̂2
1 = 1,

q(x̂) = v̂T Qv̂ 6 np̄,
‖Aix̂ + bi‖2 = v̂T Qiv̂ 6 n, i = 1, . . . , m.

Their expected values

E(q(x̂)) = E(x̂T Cx̂) = E(v̂TQv̂) = p̄
E(‖Aix̂ + bi‖2) = E(v̂TQiv̂) 6 1, i = 1, . . . , m. 2

Although x̂ is expected to meet the constraints of (QP), we have no guarantee
that it will do so for sure. If not, we need to shrink it from

x̃ = α̂x̂, (5)

where

α̂ = min
i
{α̂i};

and α̂i = 1 if ‖Aix̂ + bi‖2 6 1, elseα̂i < 1 is the positive root of the quadratic
equation ofα:

qi(α) := ‖α(Aix̂)+ bi‖2 = 1.

Next, we will prove that̃x is feasible for (QP).

4. Approximation analysis

We now analyzing the solutioñx resulted from the rank reduction procedure. We
first present a technical lemma.

LEMMA 1. Letβi > 0 and

βi := ‖Aix̂ + bi‖.
Then, for any06 α 6 1,

‖Ai(αx̂)+ bi‖2 6 α(β2
i − ‖bi‖2)+ ‖bi‖2 6 max{β2

i , ‖bi‖2}.
If βi > 1, then the root of the quadratic equation ofqi(α) = 1

α̂i >
1− ‖bi‖√
β2
i − ‖bi‖2

> 1− ‖bi‖
βi

.
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Proof.Note thatqi(α) = ‖Ai(αx̂)+ bi‖2 is a convex function ofα andqi(0) =
‖bi‖2 andqi(1) = β2

i . But α(β2
i − ‖bi‖2) + ‖bi‖2 is the linear function crossing

‖bi‖2 andβ2
i atα = 0 andα = 1, respectively. Thus, forα ∈ [0,1],

qi(α) 6 α(β2
i − ‖bi‖2)+ ‖bi‖2.

Furthermore, consider the caseβ2
i > 1. If bTi Ai x̂ 6 0, then

qi(α) 6 α2(β2
i − ‖bi‖2)+ ‖bi‖2.

Thus, the root

α̂i >
√

1− ‖bi‖2√
β2
i − ‖bi‖2

.

On the other hand, ifbTi Ai x̂ > 0, then

x̂T ATi Ai x̂ 6 β2
i − ‖bi‖2,

qi(α) 6 (α‖Aix̂‖ + ‖bi‖)2.
Thus, the root

α̂i >
1− ‖bi‖
‖Aix̂‖ >

1− ‖bi‖√
β2
i − ‖bi‖2

.

Noting the second bound is less than the first, we have proved the desired result.2
We are ready to prove the following theorem.

THEOREM 1. With probability one,x̃ generated in the above rank reduction
procedure is a feasible solution for (QP).

Proof.We need to prove that fori = 1, . . . , m,

‖Aix̃ + bi‖2 6 1.

Note that 06 α̂ 6 1. Thus, for anyi, if β2
i = ‖Aix̂ + bi‖2 6 1, we must have

from the above lemma

‖Aix̃ + bi‖2 6 max{β2
i , ‖bi‖2} 6 1.

Otherwise, sincêα 6 α̂i,

‖Aix̃ + bi‖2 = ‖Ai(α̂)x̂ + bi‖2
6 max{‖Ai(α̂i)x̂ + bi‖2, ‖bi‖2}
= max{1, ‖bi‖2}
= 1. 2
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Now we analyze the objective function value

q(x̃) = x̃T Cx̃ = α̂2x̂T Cx̂ = α̂2v̂T Qv̂.

Note thatα̂ is also a random number here. Recall

α̂ = min
i
{α̂i} > min

{i, ‖Ai x̂+bi‖2>1}

(
1− ‖bi‖√‖Aix̂ + bi‖2− ‖bi‖2

)
.

Since

β2
i = ‖Aix̂ + bi‖2 = v̂T Qiv̂,

the following lemma is a straightforward extension of the result proved by
Nemirovskii et al. [10].

LEMMA 2. For anyβ > 1, the probability

Pr

(
max
i
{‖Aix̂ + bi‖2} > β2

)
< 2mr̄ exp(−β2/2),

wherer̄ = maxi{ri}, the row dimension ofAi . 2
Hence, we have, in particular,

Pr

(
max
i
{β2
i = ‖Aix̂ + bi‖2} > 2 ln(4mnr̄)

)
< 2mr̄ exp(− ln(4mnr̄)) = 1

2n
.

Now we prove the following theorem.

THEOREM 2. The expected value

E(q(x̃)) = E(x̃T Cx̃) > (1−maxi{‖bi‖})2
4 ln(4mnr̄)

· p̄ > (1−maxi{‖bi‖})2
4 ln(4mnr̄)

· q̄,

Proof.For simplicity, let

α = 1−maxi{‖bi‖}√
2 ln(4mnr̄)

.

Note that

Pr(α̂ < α) 6 Pr

(
max
i
{β2
i = ‖Aix̂ + bi‖2} > 2 ln(4mnr̄)

)
<

1

2n
.

Recall that

E(v̂TQv̂) = p̄,
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and with probability one

v̂T Qv̂ 6 np̄.

E(x̃T Cx̃)

= E(α̂2v̂T Qv̂)

= E
(
α̂2v̂T Qv̂| α̂ > α)+ E

(
α̂2v̂T Qv̂| α̂ < α)

> E
(
α̂2v̂T Qv̂| α̂ > α) (sinceα̂2v̂T Qv̂ > 0)

> α2E
(
v̂T Qv̂| α̂ > α) (sinceα̂ > α)

= α2E(v̂TQv̂)− α2E
(
v̂T Qv̂| α̂ < α)

> α2p̄ − α2(np̄)Pr(α̂ < α) (sinceα̂2v̂T Qv̂ 6 np̄)
> α2p̄ − α2p̄/2 (since Pr

(
α̂ < α

)
6 1/2n)

= α2

2
· p̄. 2

The quality of the approximation bound is dependent on the value
(1−maxi{‖bi‖}), which is related to the condition number of the convex feasible
set measuring how “round” the interior of the set is. This condition number also
dictates the computational complexity of linear optimization over this convex set.

If we relax the feasibility by a constant fractionε, then we have

COROLLARY 1. In the rank reduction procedure, letα̂i be the root of

qi(α) = ‖α(Aix̂)+ bi‖2 = 1+ ε.
Then, with probability one

‖Aix̃ + bi‖2 6 1+ ε, i = 1, . . . , m,

and

E(x̃T Cx̃) > (ε + 1−maxi{‖bi‖})2
4 ln(4mnr̄)

· q̄ > ε2

4 ln(4mnr̄)
· q̄. 2

5. Linear inequality constraints

Consider the problem

(LQP)
q̄ := Maximize yT Cy

Subject to−l 6 AT y 6 u
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whereA ∈ <n×m andy = 0 is the analytic center of the polytope{y : −l 6
AT y 6 u} (hence the given boundsl, u > 0). Then, the problem can be written as

Maximize yT Cy

Subject to (aTi y + li)(aTi y − ui) 6 0, i = 1, . . . , m,

whereai is theith column ofA.
The quadratic constraints can be further written as

(aTi y +
li − ui

2
)2 6 (li − ui)2

4
or

(
2

li + ui a
T
i y +

li − ui
li + ui )

2 6 1.

Thus, they are in the quadratic constraint form of (QP). Furthermore, sincey is the
analytic center (see, e.g., Nesterov and Nemirovskii [14]),

1

m
6 li

ui
6 m.

Therefore, from Theorem 2 and notingr̄ = 1, we have

COROLLARY 2. The approximation algorithm presented in this paper will gen-
erate a feasible point̃x for the problem (LQP) and

E(x̃T Cx̃) > 1

m2 ln(4mn)
· q̄. 2

Note that this bound is worse than the bound of 1/m2 of Bellare and Rogaway
[3], Fu et al. [5], Vavasis [17], and Ye [20]. However, ifli

ui
is close to 1, then the

SDP relaxation and the rank reduction could yield a better approximation.
Consider the assignment polytope

n∑
j=1

xij = 1, i = 1, . . . , n,

n∑
i=1

xij = 1, j = 1, . . . , n,

xij > 0, i = 1, . . . , n, j = 1, . . . , n.

Let us transformxij to

yij = xij − 1

n
.
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Then, the system becomes

n∑
j=1

yij = 0, i = 1, . . . , n,

n∑
i=1

yij = 0, j = 1, . . . , n,

[yij > −1

n
, i = 1, . . . , n, j = 1, . . . , n.

Adding seemly redundant upper bounds and eliminating 2n variables from 2n
homogeneous equations, the system can be written as

−1

n
6 aTij y 6 1− 1

n
, i = 1, . . . , n, j = 1, . . . , n,

for given vectorsaij ∈ <n2−2n and unknowny ∈ <n2−2n. Note thaty = 0 is the
analytic center of the polytope and

1− li − ui
li + ui = 1− (1− 2

n
) = 2

n
.

Let the objective be maximizingyT Cy andC be positive semidefinite, and the
global maximum value bēq. Then, we have

COROLLARY 3. The approximation algorithm presented in this paper will gen-
erate a feasible point̃y for the problem (LQP) over the assignment polytope,
and

E(ỹT Cỹ) > 1

n2 ln(4n4)
· q̄. 2

This bound is better than the bound of 1/n3 of Fu et al. [5].

6. Linear term in the objective function

If C is not positive semidefinite and there is a linear term in the objective function
of (QP):

Maximize q(x) := xT Cx + 2cT x

Subject to ‖Aix + bi‖2 6 1, i = 1, . . . , m,

we could still solve the SDP relaxation with

Q :=
(

0 cT

c C

)
and Qi :=

( ‖bi‖2 bT Ai
ATi b ATi Ai

)
� 0.
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Let X̄(Q) be an optimizer of the (SDP) relaxation. Then

p̄ = 〈Q, X̄(Q)〉 > q̄,
and

p = −〈−Q, X̄(−Q)〉 = −y
0
(−Q)− eT y(−Q) 6 q.

From L̄L̄T = X̄ = X̄(Q), we use the same rank reduction procedure to generate
û, v̂, andx̂, then we consider botĥx and−x̂. We have

PROPOSITION 3.With probability one

v̂2
1 = 1,

q(x̂) = x̂T Cx̂ + 2cT x̂ = v̂T Qv̂,
q(−x̂) = x̂T Cx̂ − 2cT x̂ = v̂T

( −1 0
0 I

)
Q

( −1 0
0 I

)
v̂,

qi(x̂) = ‖Aix̂ + bi‖2 = v̂T Qiv̂,

qi(−x̂) = ‖Aix̂ − bi‖2 = ‖Aix̂ + bi‖2− 4bTi (Ai x̂ + bi)+ 4‖bi‖2 =
v̂T
( −1 0

0 I

)
Qi

( −1 0
0 I

)
v̂ 6 (‖Aix̂ + bi‖ + 2‖bi‖)2, i = 1, . . . , m.

Their expected values

E(max{q(x̂), q(−x̂)}) > E(q(x̂)) = E(x̂T Cx̂) = E(v̂TQv̂) = p̄,

E(‖Aix̂ + bi‖2) = E(v̂TQiv̂) 6 1, i = 1, . . . , m,

E(‖Aix̂ − bi‖2) 6 (
√

E(‖Aix̂ + bi‖2)+ 2‖bi‖)2 6 9, i = 1, . . . , m. 2
Let

α̂+ = min
i
{α̂+i }

where fori = 1, . . . , m,

α̂+i =
{

1 if ‖Aix̂ + bi‖2 6 1,
the positive root of‖α(Aix̂)+ bi‖2 = 1, otherwise;

and

α̂− = min
i
{α̂−i }

where fori = 1, . . . ., m,

α̂−i =
{

1 if ‖Aix̂ − bi‖2 6 1,
the positive root of‖α(Aix̂)− bi‖2 = 1, otherwise.
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Then, we select

x̃ =
{
α̂+ · x̂, if q(α̂+ · x̂) > q(α̂− · (−x̂)),
α̂− · (−x̂), otherwise,

(6)

That is, we shrink botĥx and−x̂ to meet the constraints and choose the better one
among the two.

Again, one can verify that̃x is feasible for (QP) from Theorem 1. Let

α̂ = min{α̂+, α̂−}.
Then, sinceq(x̂) and q(−x̂) share the same quadratic term, the linear term of
max{q(x̂), q(−x̂)} is always non-negative, which implies that

q(x̃) = max{q(α̂+ · x̂), q(α̂− · (−x̂))} > max{q(α̂ · x̂), q(α̂ · (−x̂))}
> α̂2 max{q(x̂), q(−x̂)} > α̂2q(x̂).

Moreover, ifα̂ is fixed

E(q(x̃)) > α̂2E(max{q(x̂), q(−x̂)}) > α̂2E(q(x̂)) > α̂2p̄ > α̂2q̄.

The remaining question is how smallα̂ could be. We have established a bound
for α̂+ early such that

α̂+ > min
i
{α̂+i } > min

{i, ‖Ai x̂+bi‖2>1}

(
1− ‖bi‖√‖Aix̂ + bi‖2− ‖bi‖2

)
.

Similarly, we can bound

α̂− > min
i
{α̂−i } > min

{i, ‖Ai x̂−bi‖2>1}

(
1− ‖bi‖√‖Aix̂ − bi‖2− ‖bi‖2

)
.

Recalling

‖Aix̂ − bi‖2 6 (‖Aix̂ + bi‖ + 2‖bi‖)2
and using Lemma 2, we must have

LEMMA 3. For anyβ > 1, The probability

Pr

(
max
i
{‖Aix̂ − bi‖2} > (β + 2‖bi‖)2

)
< 2mr̄ exp(−β2/2),

wherer̄ = maxi{ri}, the row dimension ofAi . 2
Hence, we have, in particular,

Pr

(
max
i
{‖Aix̂ − bi‖2} > (

√
2 ln(4mnr̄)+ 2‖bi‖)2

)
< 2mr̄ exp(− ln(4mnr̄)) = 1

2n
.

Since‖bi‖ < 1 for all i, we can now prove the following theorem
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THEOREM 3. Let us fix

α̂ = α := 1−maxi{‖bi‖}√
2 ln(4mnr̄)+ 2

in the above rank reduction procedure. Then,

E(q(x̃)) > (1−maxi{‖bi‖})2
(
√

2 ln(4mnr̄)+ 2)2
· p̄ > (1−maxi{‖bi‖})2

(
√

2 ln(4mnr̄)+ 2)2
· q̄,

and, with probability greater than(1− 2/n), x̃ is a feasible point for (QP). 2
Thus, asn→∞, x̃ is surely a feasible point for (QP) and its expected objective

value is bounded below by a fraction ofq̄ from the theorem.
If α̂ is assigned from the random vectorx̂, we can prove a quality bound using

a measure similar to the one in Nesterov [12] and Ye [19]. First, we note again that

Pr(α̂ < α) 6 1

2n
.

Let (y
0
, y) = −(ȳ0(−Q), ȳ(−Q)) ∈ <m+1. Theny 6 0,p = y

0
+ eT y,

S := Q−
m∑
i=0

y
i
Qi � 0,

and

〈S, X̄〉 = p̄ −
m∑
i=0

y
i
〈Qi, X̄〉 = p̄ − p̃ 6 p̄ − p,

since〈Q0, X̄〉 = 1 and〈Qi, X̄〉 6 1, i = 1, . . . , m, so that

p̃ := y
0
+

m∑
i=1

y
i
〈Qi, X̄〉 > p.

Therefore, with probability one

v̂T Sv̂ 6 n(p̄ − p̃),
and

E(v̂T Sv̂) = 〈S, X̄〉 = p̄ − p̃
and

E

(
v̂T

(
m∑
i=0

y
i
Qi

)
v̂

)
=

m∑
i=0

y
i
〈Qi, X̄〉 = p̃.
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Furthermore, ify
0
> 0, then

S + y
0
Q0 = S + y0

I1 � 0,

and with probability one

v̂T (S + y
0
Q0)v̂ 6 n(p̄ − p̃ + y0

),

and

E(v̂T (S + y
0
Q0)v̂) = 〈S + y0

Q0, X̄〉 = p̄ − p̃ + y0

and

E

(
v̂T

(
m∑
i=1

y
i
Qi

)
v̂

)
=

m∑
i=1

y
i
〈Qi, X̄〉 = p̃ − y0

.

We first consider the casey
0
6 0. Then,

E(q(x̃))

> E
(
α̂2q(x̂)

)
= E

(
α̂2v̂T Qv̂

)
= E

(
α̂2v̂T

(
m∑
i=0

y
i
Qi +Q−

m∑
i=0

y
i
Qi

)
v̂

)

= E
(
α̂2v̂T Sv̂

)+ E

(
α̂2v̂T

(
m∑
i=0

y
i
Qi

)
v̂

)

> E
(
α̂2v̂T Sv̂

)+ E

(
v̂T

(
m∑
i=0

y
i
Qi

)
v̂

)
(sinceα̂2 6 1, y

i
6 0, v̂TQiv̂ > 0, i = 0, . . . , m)

= E
(
α̂2v̂T Sv̂

)+ p̃
> E

(
α̂2v̂T Sv̂| α̂ > α)+ p̃ (sincev̂T Sv̂ > 0)

> α2E
(
v̂T Sv̂| α̂ > α)+ p̃ (sinceα̂ > α)

= α2E
(
v̂T Sv̂

)− α2E
(
v̂T Sv̂| α̂ < α)+ p̃

= α2(p̄ − p̃)− α2E
(
v̂T Sv̂| α̂ < α)+ p̃

> α2(p̄ − p̃)− α2n(p̄ − p̃)Pr(α̂ < α)+ p̃ (sincev̂T Sv̂ 6 n(p̄ − p̃))
> α2(p̄ − p̃)− α2(p̄ − p̃)/2+ p̃ (since Pr(α̂ < α) 6 1/2n)

= α2

2
(p̄ − p̃)+ p̃.
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Secondly, consider the casey
0
> 0. Then,

E(q(x̃))

> E
(
α̂2q(x̂)

)
= E

(
α̂2v̂T Qv̂

)
= E

(
α̂2v̂T

(
m∑
i=0

y
i
Qi +Q−

m∑
i=0

y
i
Qi

)
v̂

)

= E
(
α̂2v̂T (S + y

0
Q0)v̂

)
+ E

(
α̂2v̂T

(
m∑
i=1

y
i
Qi

)
v̂

)

> E
(
α̂2v̂T (S + y

0
Q0)v̂

)
+ E

(
v̂T

(
m∑
i=1

y
i
Qi

)
v̂

)
(sinceα̂2 6 1, y

i
6 0, v̂TQiv̂ > 0, i = 1, . . . , m)

= E
(
α̂2v̂T (S + y

0
Q0)v̂

)
+ (p̃ − y

0
)

> E
(
α̂2v̂T (S+y

0
Q0)v̂| α̂>α

)
+(p̃−y

0
) (sincev̂T (S+y

0
Q0)v̂>0)

> α2E
(
v̂T (S + y

0
Q0)v̂| α̂ > α

)
+ (p̃ − y

0
) (sinceα̂ > α)

= α2E
(
v̂T (S + y

0
Q0)v̂

)
− α2E

(
v̂T (S + y

0
Q0)v̂| α̂ < α

)
+ (p̃ − y

0
)

= α2(p̄ − p̃ + y
0
)− α2E

(
v̂T (S + y

0
Q0)v̂| α̂ < α

)
+ (p̃ − y

0
)

> α2(p̄ − p̃ + y
0
)− α2n(p̄ − p̃ + y

0
)Pr(α̂ < α)+ (p̃ − y

0
)

(sincev̂T Sv̂ 6 n(p̄ − p̃ + y
0
))

> α2(p̄ − p̃ + y
0
)− α2(p̄ − p̃ + y

0
)/2+ (p̃ − y

0
)

(since Pr(α̂ < α) 6 1/2n)

= α2

2
(p̄ − p̃ + y

0
)+ (p̃ − y

0
)

> α2

2
(p̄ − p̃)+ p̃. (sincey

0
> 0,

α2

2
< 1)

Both inequalities imply that

E(q(x̃))− p̃ > α2

2
(p̄ − p̃),

which further implies that

E(q(x̃))− p > α2

2
(p̄ − p),

sincep̃ > p and 1− α2

2 > 0. This leads to
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THEOREM 4. The expected value

E(q(x̃))− p > (1−maxi{‖bi‖})2
2(
√

2 ln(4mnr̄)+ 2)2
· (p̄ − p)

> (1−maxi{‖bi‖})2
2(
√

2 ln(4mnr̄)+ 2)2
· (q̄ − p). 2

We remark that ifC � 0 andc = 0, thenQ � 0 andp = 0, and the theorem
establishes the same bound as in Theorem 2.
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